
Particle in Cell Simulations

Tony Arber	

!

University of Warwick

EPOCH Workshop, Strathcylde, 3-4 Feb 2014

What are PIC Codes?

Aim: 	

Simulate the full kinetics of a plasma and its
interaction with self-consistent EM fields.

Particle in Cell:
• Particles move freely under action of Lorentz force	

• Moments of distribution functions (density and velocity)
plus all EM field variables calculated only on a fixed grid.

Macro-particles

In practice too many real particles to solve full problem.	

!
Introduce macro-particles (super-particles) which
represent many real particles.	

!
In collisionless limit these macro-particles are free to
move through each other.	

!
Since they represent a ‘cloud’ of real particles they
occupy a finite volume and have a shape.	

!
They do not change their shape under normal motion,
nor do they rotate or have any internal degrees of
freedom.

PIC Grids

EM field values &
fluid moments
stored at fixed
locations on a
fixed grid

Macro-particles, of finite size, move freely space.

Basic Algorithm

• Update EM fields on fixed grid - needs fluid moments.	

• Interpolate EM fields from grid to particle locations.	

• Move particles in local EM field.	

• Update fluid moments on fixed grid from particles.

This takes values at time-step n, e. g. , and moves
them forwards in time by a fixed time-step.

En
or rni

Initialising the macro-particles

For initial conditions we usually know the density,
temperature and centre of mass motion for each species, i.e.
the fluid moments.	

!
Macro-particles then selected so that they match the
probability distribution required, usually Maxwellian. 	

!
Macro-particles have the same charge to mass ratio, and
hence orbit, as real particles but have much larger actual
charge and mass.

Mathematical model

du
dt

=
q

m
(E + v ⇥B)

@B
@t

= �r⇥E

@E
@t

= c2r⇥B� j
✏0

For each particle in the simulation

u = �v

Update the EM field through Maxwell’s equations

Current density found
from particle positions
and momenta

dr
dt

= v

� =
✓

1 +
⇣u

c

⌘2
◆1/2

Maxwell Equations - only 2!

@B
@t

= �r⇥E
@

@t
r.B = 0

@E
@t

= c2r⇥B� j
✏0

@

@t
r.E = �r.j

✏0

@⇢

@t
= �r.j r.E =

⇢

✏0

Provided div.B=0 initially it will always be zero

Provided charge is conserved Gauss’s law is satisfied

Analytically only need two of Maxwell’s equations 	

Not automatically true for numerical schemes

Field Update - Leapfrog

Bn+1 �Bn

�t
= �r⇥En+1/2

En+3/2 �En+1/2

�t
= c2r⇥Bn+1 � jn+1

✏0

 0 0.5 1 1.5 2 2.5 3 3.5

Time Step

RHS time-centred therefore 2nd order accurate, i.e. error 	

Need E and B at different times

O(�t2)

Field Updates - FDTD

En+1/2 �En

�t/2
= c2r⇥Bn � jn

✏0

Bn+1/2 �Bn

�t/2
= �r⇥En+1/2

Update particle position and momentum to find jn+1

Bn+1 �Bn+1/2

�t/2
= �r⇥En+1/2

En+1 �En+1/2

�t/2
= c2r⇥Bn+1 � jn+1

✏0

Combined scheme a re-ordering of 2nd order Leapfrog - it is the same as Leapfrog!	

E and B defined at the same times

Many PIC codes now use Finite Difference Time Domain

Spatial grid - the Yee grid

In 3D the variables are defined on the staggered Yee
grid to centre all derivatives

(i,j,k)

X

Y

Z

Ez

By

Bx

Bz

Ex

Ey

Bn+1 �Bn

�t
= �r⇥En+1/2

Bx

n+1
i,j,k �Bx

n
i,j,k = ��t

�y

⇣
Ez

n+1/2
i,j,k+1 � Ez

n+1/2
i,j,k

⌘

+
�t

�z

⇣
Ey

n+1/2
i,j+1,k � Ey

n+1/2
i,j,k

⌘

This automatic centering
of spatial derivatives is true
for all derivatives required

Particle Motion - 1

dr
dt

= v

du
dt

=
q

m
(E + v ⇥B)

Aim is for 2nd order accuracy so
need RHS time-centred.

Leapfrog approach

rn+1/2 � rn+3/2

dt
= vn+1

un+1 � un

dt
=

q

m
(En+1/2 + vn+1/2 ⇥Bn+1/2)

 0 0.5 1 1.5 2 2.5 3 3.5

Time Step

How to get time-
centred velocity?

Bn+1/2 = B(rn+1/2)
En+1/2 = E(rn+1/2)

Particle Motion - 2

Set time-centred velocity to be an average

This is implicit as it involves v, and hence u, at the
updated time-step on the RHS

un+1 � un

�t
=

q

m
(En+1/2 + vn+1/2 ⇥Bn+1/2)

un+1 � un

�t
=

q

m
(En+1/2 +

1
2
(vn+1 + vn)⇥Bn+1/2)

Boris algorithm -1

un+1 � un

�t
=

q

m

✓
En+1/2 +

1
2�n+1/2

(un+1 + un)⇥Bn+1/2

◆

Rearrange as

un = u� � q�t

2m
En+1/2 un+1 = u+ +

q�t

2m
En+1/2

Where the new velocities are defined such that

u+ � u�

�t
=

q

2m�n+1/2
(un+1 + un)⇥Bn+1/2

u+ � u�

�t
=

q

2m�n+1/2
(u+ + u�)⇥Bn+1/2

vxB rotation

u+ � u�

�t
=

q

2m�n+1/2
(u+ + u�)⇥Bn+1/2

Taking the dot product with u+ + u�

�
u+

�2 �
�
u�

�2 = 0

Hence the magnitude of u is conserved and this is a
rotation about B. 	

 	

As a result gamma is constant through this step and we
can take

�n+1/2 = �� = �(u�)

Boris algorithm - 2

Apply half the electric field acceleration

u� = un +
q�t

2m
En+1/2

Update u-minus to u-plus by rotation

u+ � u�

�t
=

q

2m��
(u+ + u�)⇥Bn+1/2

Apply half the electric field acceleration

un+1 = u+ +
q�t

2m
En+1/2

Particle Shape Functions

 2 3 4 5 1

Grid Point

 2 3 4 5 1

Grid Point

 2 3 4 5 1

Grid Point

Top hat

Triangle

Spline

Increasing accuracy

Particle Weight Functions
As a particle moves through the grid its contribution to
each grid point is its weight function. This is the integral
of the shape function.

 2 3 4 5 1

Grid Point

 2 3 4 5 1

Grid Point

D
en

si
ty Weight = S(Xj � ri)

Shape

Weight, i.e. fraction of macro-particle, in cell j at Xj

depends on particle shape and particle position ri

Birdsall & Langdon call Weight function Shape function

Particle data to grid

EM field solver only needs current density from particles.

jnj =
X

i

vn
i S(Xj � rn

i)

LHS is the current density at time-step n at grid point j

Could also find the number density through

nn
j =

X

i

S(Xj � rn
i)

Repeat for each species and then calculate the charge density.
Then find that these do not satisfy

@⇢

@t
= �r.j

Same as saying that the E-field and charge density do not
satisfy Poisson’s equation.

Villasenour & Buneman

Current density
defined at cell
faces

Do not calculate the current density by taking moments of the
distribution function. Use particle fluxes instead.

Grid data to particle

To move the particles need to find the E and B fields at the
particle position.	

!
Particles not on grid points therefore need to interpolate
from the grid to the particle.	

!
Do this using the particle weight functions so that particle
to grid and grid to particle are inverses.

E(rn
i) =

X

j

EjS(Xj � rn
i)

 2 3 4 5 1

Grid Point

D
en

si
ty

Effect of finite number of particles

Finite size, and number, of macro-particles means that the
source current density used to update EM fields is noisy.	

!
The real collisionless field should be smooth.	

!
Call the smooth fields 	

!
Fields in PIC code

(Es,Bs)

(E,B)
E = Es + �E

�EThe ‘noise’ field acts to heat the plasma. Usually
this is linear in time.

Time-step restrictions - 1

For numerical stability of EM field solver need

Resolving plasma frequency requires

�tem �x

c

Stability requires �t = min(�tem, �tp)

�tp
1

!pe

If the Debye length is resolved then is the limiter.�tem

If the Debye length is not resolved then is the
limiter if

�tp

�x >

c

!pe

Time-step restrictions - 2
If the magnetic field becomes dominant then it is also
important to have

�t <
1
⌦c

This then resolves the electron gyro-orbits.

In 3D the stability condition for EM waves changes to

�t
em

 1

c
⇣

1
�x

2 + 1
�y

2 + 1
�z

2

⌘1/2

Real expressions have constants ~1 and factors of 	

omitted here for simplicity

⇡

Summary of PIC code basics!

• EM field updated by finite difference scheme.	

• Use Yee grid to ensure second order accuracy in space.	

• Particles moved by Boris algorithm.	

• Only coupling of particles to grid is through current density.	

• Current density found from particle weight function.	

• Statistical noise leads to articifial heating.

Practical usage advice

• Test against analytic results where possible	

• Increase the number of particles per cell (ppc) to check accuracy	

• Increase the number of grid points and ppc to check accuracy	

• Try with higher order weight functions to test accuracy	

• Run without perturbations to check self-heating	

• Basic relativistic EM PIC codes	

• Make sure all expected physical lengths and times will be resolved	

The EPOCH Project	

!

A freely available EM PIC code

Principle Investigators	

!
Prof. A. R. Bell (Oxford)	

Prof. R. G. Evans (Imperial)	

Prof. T. D. Arber (Warwick)

Developers	

!
Keith Bennett (Warwick)	

Chris Brady (Warwick)	

Chris Ridgers (York)	

Holger Schmidz (RAL)	

Based on core algorithm from PSC by Hartmut Ruhl

EPOCH Code and Project

Extendable PIC Open Collaboration (the H is silent!)

EPSRC funded project to develop a UK advanced PIC code.	

!
Core Relativistic EM PIC code is freely available.	

!
Project funds 3 PDRAs to develop the code. These are in
Oxford/Imperial/Warwick. Funds for an additional 1.5 years.

Advanced features include:	

• Collisions	

• Radiation	

• Ionisation	

• QED effects	

• Hybrid schemes

EPOCH Self-Heating

Based on averaging across multiple tests an order of
magnitude estimate of the self-heating in EPOCH is

dTeV

dtps
= ↵H

n

3/2
23 �x

2
nm

nppc

Temperature in eV, time in ps, density in units of 1023 cm-3

�xnm- typical grid spacing in nm

nppc- number of particles per cell

↵H - depends on shape function and smoothing

EPOCH Self-Heating - 2

Running EPOCH & Visualisation

EPOCH comes with a configurable Makefile.	

!
Runs in MPI - currently tested up to 4096 cores.	

!
Includes readers to input data directly into IDL, VisIt,
MATLAB and gdl.	

!
Custom VisIt reader, and gdl, allows users to use freely
available visualisation software.

Today’s Workshop

Download EPOCH	

!
Run simple test problems	

!
Use visualisation tools	

!
Setup full 2D PIC simulations for laser-plasmas	

!
Run test problems with ionisation, collisions or QED	

!
Understand the Manual

